BiP, an endoplasmic reticulum chaperone, modulates the development of morphine antinociceptive tolerance
نویسندگان
چکیده
Morphine is a potent analgesic, but the molecular mechanism for tolerance formation after repeated use is not fully understood. Binding immunoglobulin protein (BiP) is an endoplasmic reticulum (ER) chaperone that is central to ER function. We examined knock-in mice expressing a mutant BiP with the retrieval sequence deleted in order to elucidate physiological processes that are sensitive to BiP functions. We tested the thermal antinociceptive effect of morphine in heterozygous mutant BiP mice in a hot plate test. Paw withdrawal latencies before and after a single administration of morphine were not significantly different between the wild-type and mutant BiP mice. Repeated morphine administration caused the development of morphine tolerance in the wild-type mice. The activation of glycogen synthase kinase 3b (GSK-3b) was associated with morphine tolerance, because an inhibitor of GSK-3β prevented it. On the other hand, the mutant BiP mice showed less morphine tolerance, and the activation of GSK-3b was suppressed in their brain. These results suggest that BiP may play an important role in the development of morphine tolerance. Furthermore, we found that a chemical chaperone which improves ER protein folding capacity also attenuated the development of morphine tolerance in wild-type mice, suggesting a possible clinical application of chemical chaperones in preventing morphine tolerance.
منابع مشابه
Endoplasmic Reticulum Stress in Spinal Cord Contributes to the Development of Morphine Tolerance
Morphine tolerance remains an intractable problem, which hinders its prolonged use in clinical practice. Endoplasmic reticulum (ER) stress has been proved to play a fundamental role in the pathogenesis of Alzheimer's disease, diabetes, atherosclerosis, cancer, etc. In this study, we provide the first direct evidence that ER stress may be a significant driver of morphine tolerance. Binding immun...
متن کاملEnhanced binding to the molecular chaperone BiP slows thyroglobulin export from the endoplasmic reticulum.
To examine how binding of BiP (a molecular chaperone of the hsp70 family that resides in the endoplasmic reticulum) influences the conformational maturation of thyroglobulin (Tg, the precursor for thyroid hormone synthesis), we have developed a system of recombinant Tg stably expressed in wild-type Chinese hamster ovary (CHO) cells and CHO-B cells genetically manipulated for selectively increas...
متن کاملUnfolded protein response-regulated Drosophila Fic (dFic) protein reversibly AMPylates BiP chaperone during endoplasmic reticulum homeostasis.
Drosophila Fic (dFic) mediates AMPylation, a covalent attachment of adenosine monophosphate (AMP) from ATP to hydroxyl side chains of protein substrates. Here, we identified the endoplasmic reticulum (ER) chaperone BiP as a substrate for dFic and mapped the modification site to Thr-366 within the ATPase domain. The level of AMPylated BiP in Drosophila S2 cells is high during homeostasis, wherea...
متن کاملAllosteric fine-tuning of the conformational equilibrium poises the chaperone BiP for post-translational regulation
BiP is the only Hsp70 chaperone in the endoplasmic reticulum (ER) and similar to other Hsp70s, its activity relies on nucleotide- and substrate-controllable docking and undocking of its nucleotide-binding domain (NBD) and substrate-binding domain (SBD). However, little is known of specific features of the BiP conformational landscape that tune BiP to its unique tasks and the ER environment. We ...
متن کاملComputational Modeling of Chaperone Interactions in the Endoplasmic Reticulum of Saccharomyces Cerevisiae
In eukaryotes, the endoplasmic reticulum (ER) acts as a protein gatekeeper for protein folding, maturation, and transport. Molecular chaperones, of the Hsp70 family of proteins, participate in assisting these processes and are essential to cellular function and survival. BiP is the resident chaperone in the ER of Sacchromyces cerevisiae. In this study we have created two deterministic models to...
متن کامل